Public disclosure of players' conduct and Common Resources Harvesting:

Experimental Evidence from a Nairobi Slum

Leonardo Becchetti – University of Rome "Tor Vergata" Pierluigi Conzo – CSEF & Univ. of Naples "Federico II" Giacomo Degli Antoni – University of Milano "Bicocca"

Introduction

- Analyse if and how disclosure of information on players' behaviour affects cooperation dynamics
- Common Pool Resource Game in Nairobi slum (CPRG):
 - Restricted Information Treatment (RIT)
 - Public Information Treatment (PIT)
- Information induced asymmetric conformity. Only in PIT:
 - Less opportunistic players move toward group average
 - ...more than more opportunistic ones

Related Literature (1)

Conformity:

- degree to which persons in a group modify their behavior, views, and attitudes to fit the views of the group (Moscovici, 1985 – Cialdini &Trost, 1998)
- Rationales: i) avoiding sanctions due to deviation ii) information obtained and processed by others (Deutsch and Gerard, 1955 - Carpenter, 2004)
- Capra and Li (2006); Bardsley and Sausgruber (2005);
 Carpenter (2004)

Related Literature (2)

- Capra and Li (2006):
 - Revision of initial choice upon receiving payoff-irrelevant info on other players' decision.
 - willingness to conform in a PGG (no in DG). Complexity...
- Bardsley and Sausgruber (2005):
 - information on decisions by their own group and another group
 - conformity explains about 1/3 of the "crowding in"
- Carpenter (2004)
 - PGG; control/monitor with reshuffling; Info: distribution of contribution choices.
 - Free riding faster in the monitor than in the control → conformity effect.

Our Paper (1)

- PIT/RIT in Nairobi (scarce social capital + "harambee")
- Findings:
 - 1. Subjects tend to conform to the average
 - who withdrew < average → withdraw > average
 - who withdrew > average → withdraw < average</p>
 - 2. Conformism is asymmetric:
 - who withdrew < average → withdraw > average
 AND > the increase in contribution by who withdrew > average.

Our Paper (2)

- Control for conditional cooperation and anchoring + demographics.
- Our PIT = monitoring without sanctioning in management of common pool resources (Omstrom 2009)
- Information → conformity → "tragedy of the commons"
 - worse than no monitoring no sanctions situations

Experimental Design

- CPRG and "Harambee"
- 5 rounds; 304 subjects (76 groups of 4)
 - Sit around a pile of 600 KSh (€ 6.18 weekly wage).
 - withdraw 0-150 KSh;
 - amount left is doubled and divided equally.
 - Unknown n. of rounds; payment for 1 randomly selected round.
- Treatments (38 groups each):
 - RIT: own decision and payoff
 - PIT: own and others' decision and payoff
- Socio demographic survey

Main Hypothesis

- H₀: WR_{PIT} = WR_{RIT} → no impact of information disclosure on withdrawal-ratio
- H_{1a} : WR_{PIT} > WR_{RIT} → "downward cascade of cooperation" (Ostrom, 2000) (info, no sanction)
- H_{1a} : WR_{PIT} < WR_{RIT} → information reinforces reputational concerns vis-à-vis other players

Balancing properties for socio-demographic variables: PIT vs. RIT

	Wilcoxon rank-sum (Mann-Whitney) test	Prob > z
Age	-0.267	0.789
Female	1.243	0.214
Married	-0.892	0.372
Separated	1.607	0.108
Divorced	0.608	0.543
Kikuyo	-1.493	0.135
Luo	1.755	0.079
Lubian	-0.331	0.741
Luhya	-0.504	0.614
Juakali	0.511	0.609
Muslim	0.565	0.572
Years _schooling	0.552	0.581
N_children	0.446	0.656
Food_expenditure_day	0.587	0.557
Unemployed	-2.197	0.028
Trustindex	-0.322	0.747
Sociability	0.721	0.471
Riskaverse	-0.460	0.646
Discount Rate	-0.783	0.434

Mean v	Mean withdrawal rates in the RIT and PIT treatment								
	Mean withdrawal rate RIT	Mean withdrawal rate PIT	PIT-RIT (t-test)	PIT-RIT (ranksun					
All rounds	.627	.743	-7.61 (0.000)	-6.517 (0.000)					

.686

.764

.717

.786

.764

Round 1

Round 2

Round 3

Round 4

Round 5

.617

.630

.623

.626

.648

-1.824

(0.07)

-3.8460

(0.0001)

-2.60

(0.01)

-4.52

(0.000)

-3.264

(0.001)

-1.69

(0.09)

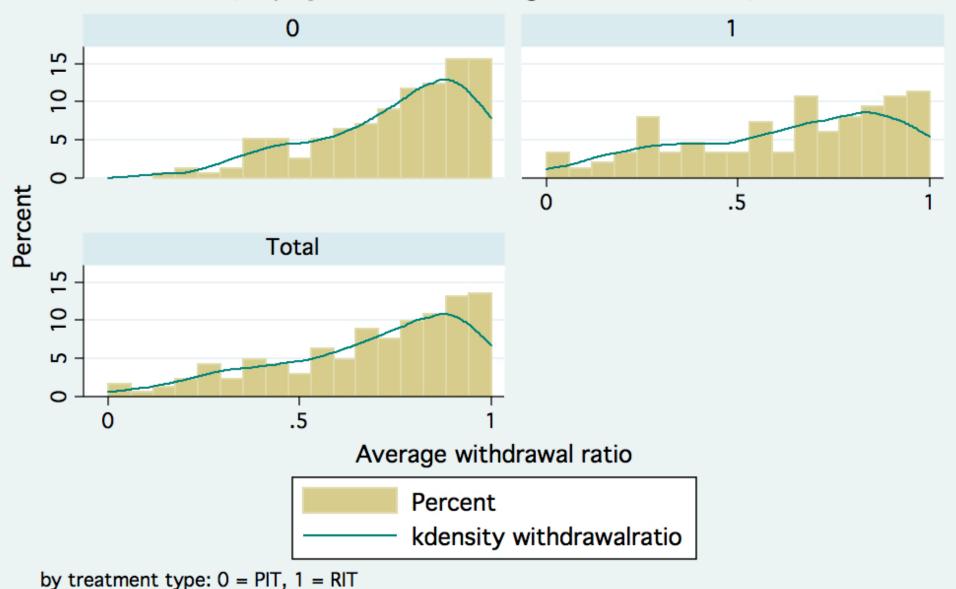
-3.350

(8000.0)

-2.097

(0.03)

-3.935


(0.0001)

-2.604

(0.009)

Distribution of withdrawal ratios

(at players' level - averaged over 5 rounds)

Comments:

- PIT-RIT: significant and progressively wider across rounds.
 - No significant in the first round
 - More than doubles from initial levels
 - Peaks at 16% in the fourth round
- group members do not vary across rounds
- ...but reputation increase free-riding instead of cooperation!

Econometric Analisis

$$WR_{it} = \alpha_0 + \sum_{j} \beta_j DROUND_j + \sum_{k} \gamma_k X_{ki} \dots$$

+
$$\alpha_1$$
 GWR _{i,t-1}

+
$$\alpha_2$$
 GWR*PIT_{i,t-1}

+
$$\alpha_3$$
 (ME-GROUP)_{i,t-1} or diff-rank \rightarrow Conformity (two-sided) (-)

+
$$\alpha_4$$
 (ME-GROUP)*PIT_{i.t-1} or diff-rank \rightarrow Information-induced Conformity (-)

+
$$\alpha_5$$
 CHEATED_{i,t-1}

+
$$\alpha_6$$
 CHEATED*PIT_{i.t-1}

+
$$\alpha_7$$
 UNCONDITIONAL_i

+
$$\alpha_9 PIT + \varepsilon_i$$

Socio-Demog. Controls

VARIABLES

Round Dummies

Betrayalaverse

PIT

GWR_{t-1}

GWR*PIT +-1

ME-GROUP +_1

CHEATED , 1

CHEATED*PIT + 1

MAXGROUP +_1

Observations

Number of players

UNCONDITIONAL t.1

ME-GROUP*PIT +-1

(RANK)ME-GROUP_{t-1}

(RANK)ME-GROUP*PIT +-1

The determinants of player's withdrawal rate

(1)

YES

YES

0.070**

(0.030)

0.078***

(0.024)

0.003***

(0.0001)

1505

301

(2)

YES

YES

0.070**

(0.030)

0.151**

(0.077)

0.003***

(0.001)

-0.001 (0.001)

1505

301

(3)

YES

YES

0.025

(0.015)

0.044***

(0.012)

0.004***

(0.0001)

0.004***

(0.000)

1505

301

(4)

YES

YES

0.029*

(0.015)

0.046***

(0.012)

0.004***

(0.0001)

0.004***

(0.000)

-0.001*** (0.000)

1505

301

(5)

YES

YES

0.029

(0.018)

0.216***

(0.041)

0.004***

(0.0001)

0.151***

(0.010)

-0.068***

(0.014)

1505

301

(6)

YES

YES

0.030*

(0.018)

0.128**

(0.054)

0.004***

(0.0001)

0.139***

(0.012)

-0.045***

(0.017)

-0.041

(0.029)

0.082**

(0.038)

1505

301

(7)

YES

YES

0.030

(0.018)

0.131**

(0.054)

0.005***

(0.001)

0.139***

(0.012)

-0.045***

(0.017)

-0.039

(0.029)

0.081**

(0.038)

-0.0001 (0.0001)

1505

301

(8)

YES

YES

0.014

(0.018)

0.122**

(0.049)

0.004***

(0.000)

0.116***

(0.012)

-0.036**

(0.016)

-0.043

(0.028)

0.074**

(0.037)

0.001***

(0.000)

1505

301

The determinants of player's withdrawal rate									
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Round Dummies	YES								
GWR _{t-1}	0.0001	0.0001	0.0001	0.0001	0.0001	0.001*	0.001*	0.001*	
	(0.0001)	(0.001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.001)	(0.0001)	
GWR*PIT _{t-1}		0.0001							
		(0.001)							
ME-GROUP _{t-1}			0.001**	0.001***					
			(0.000)	(0.000)					
ME-GROUP*PIT _{t-1}				-0.001**					
				(0.000)					
(RANK)GWR _{t-1}					0.037***	0.040***	0.041***	0.040***	
					(0.012)	(0.014)	(0.014)	(0.014)	
(RANK)GWR*PIT _{t-1}					-0.038**	-0.022	-0.022	-0.022	
					(0.016)	(0.018)	(0.018)	(0.018)	
CHEAT _{t-1}						0.017	0.018	0.017	
						(0.026)	(0.026)	(0.026)	
CHEAT*PIT _{t-1}						0.066**	0.064**	0.066**	
						(0.032)	(0.032)	(0.032)	
MAXGROUP _{t-1}							-0.0001		
							(0.0001)		
Constant	0.608***	0.608***	0.607***	0.611***	0.569***	0.510***	0.479***	0.510***	
	(0.036)	(0.036)	(0.036)	(0.036)	(0.041)	(0.047)	(0.052)	(0.047)	
Observations	1505	1505	1505	1505	1505	1505	1505	1505	
Number of players	301	301	301	301	301	301	301	301	

Robustness

- Conformity variable: my-others' payoff
- Fixed effects
 - clustering standard errors is not enough (repeated observations for the same individual)
 - unobservable time invariant sociodemographic factors.

Results are unchanged

Comments

- Information → move toward mean group behavior (information induced conformity)
- ...much stronger if they are more cooperative than if they are less cooperative than average → asymmetric information-induced conformity.
- ...occurs net of conditional and unconditional contribution effects (also significant).
- Betrayal aversion not significant when controlling for conformity.
- PIT dummy remains significant in all estimates: conformity vars → widening difference but not for the initial gap.

Conclusions (1)

- Relative poverty of social capital in Nairobi slums
 - crucial for public goods and common resources production and management
- Multiperiod CPRG experiment
 - Closer to the everyday: face to face interaction
- Treatments (PIT, RIT): information disclosure about other players cooperative/non cooperative attitudes

Conclusions (2)

Results:

- 1. Progressive divergence of WR in PIT and RIT across rounds: Disclosure of info reduces cooperation.
- 2. Unconditional cooperation and weak conditional reciprocity effects
- 3. Induced asymmetric conformity:
 - with public information, players tend to conform to average group behavior...
 - ...but more strongly if in the previous round they were more cooperative than the average of their group
- 4. Betrayal Aversion → PIT:
 - dislike of non reciprocated trust → cooperators above group average move toward the mean more than cooperator below average.

Conclusions (3)

- Conformity is an important driver of players action in poor socioeconomic environments
- Conformity is information induced and asymmetric → monitoring and public information without sanctions reduce (!) cooperation
- ...tragedy of the commons more likely to occur.

